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ABSTRACT 
 

Many methods have been developed for structural size and configuration optimization in 
which cross-sectional areas are usually assumed to be continuous. In most practical 
structural engineering design problems, however, the design variables are discrete. This 
paper proposes two efficient structural optimization methods based on the harmony search 
(HS) heuristic algorithm that treat both discrete sizing variables and integrated discrete 
sizing and continuous geometric variables. The HS algorithm uses a stochastic random 
search instead of a gradient search so the former has a new-paradigmed derivative. Several 
truss examples from the literature are also presented to demonstrate the effectiveness and 
robustness of the new method, as compared to current optimization methods.  
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1. INTRODUCTION 
 

Structural design optimization is a critical and challenging activity that has received 
considerable attention in the last two decades. Typically, structural optimization problems 
involve searching for the minimum of a stated objective function, usually the structural weight. 
This minimum design is subjected to various constraints with respect to performance measures, 
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such as stresses and displacements, and also restricted by practical minimum cross-sectional 
areas or dimensions of the structural members or components. If the design variables can be 
varied continuously in the optimization, the problem is termed “continuous”; while if the design 
variables represent a selection from a set of parts, the problem is considered “discrete”. 

Many gradient-based mathematical programming methods have been developed, and 
they are frequently used to solve structural optimization problems. The majority of these 
methods assume that cross-sectional areas (i.e., the sizing variables) are continuous. In most 
practical structural engineering design problems, however, sizes have to be chosen from a 
list of discrete values due to the availability of components in standard sizes and constraints 
caused by construction and manufacturing practices. This leads to discrete optimization 
problems, which are somewhat difficult to solve. Although conventional mathematical 
methods can consider discreteness by employing round-off techniques based on continuous 
solutions, the rounded-off solutions may yield results that are far from optimum, or they 
may even become infeasible as the number of variables increases. Because most available 
optimization methods treat design variables as continuous, they are inadequate in the 
presence of discrete design variables. A few methods based on mathematical programming 
techniques have been developed to handle the discrete nature of design variables [1-8]. 

They provide useful strategies when solving limited problems, but every method has its 
drawbacks. These include low efficiency, limited reliability, and the problem of readily 
becoming trapped at a local optimum [6, 9]. 

Over the last decade, new optimization strategies based on heuristic algorithms, such as the 
simulated annealing algorithm and the genetic algorithm (GA), have been devised to obtain 
optimal designs for discrete structural systems and to overcome the computational drawbacks 
of conventional mathematical optimization methods. The GA-based discrete optimization 
methods, in particular, have been studied by many researchers, including Rajeev and 
Krishnamoorthy [10, 11], Lin and Hajela [12], Wu and Chow [9, 13], Camp et al. [14], 
Pezeshk et al. [15], and Erbatur et al. [16]. The GA was originally proposed by Holland [17] 
and was further developed by Goldberg [18] and by others. It is a global search algorithm that 
is based on concepts from natural genetics and the Darwinian survival-of-the-fittest code. 
Heuristic algorithm-based discrete optimization methods for structures, including GA-based 
methods, have occasionally overcome several deficiencies of conventional mathematical 
methods. However, structural engineers are still concerned with seeking a more powerful, 
effective, and robust method for discrete structural optimization problems. 

The main purpose of this paper is to propose an efficient discrete sizing and integrated 
discrete sizing and continuous geometric optimization methods for truss structural systems. 
In our previous research [19, 20], a new optimization method for structures with continuous 
variables was proposed, based on the harmony search (HS) heuristic algorithm, and its 
effectiveness and capability were verified from comparisons with GA-based and 
conventional mathematical optimization techniques. The recently developed HS algorithm is 
based on natural musical performance processes that occur when musicians search for a 
better state of harmony, such as during jazz improvisation [21]. Compared to conventional 
mathematical optimization algorithms, the HS algorithm imposes fewer mathematical 
requirements to solve optimization problems, and the probability of becoming entrapped in a 
local optimum is reduced because this algorithm is not a hill-climbing algorithm. Since the 



DISCRETE SIZE AND DISCRETE-CONTINUOUS CONFIGURATION... 
 

 

109

HS algorithm uses a stochastic random search, it has a new-paradigmed derivative [22]. The 
algorithm considers several solution vectors simultaneously, in a manner similar to the GA. 
However, the major difference between the GA and the HS algorithm is that the latter 
generates a new vector from all the existing vectors, while the former generates a new vector 
from only two of the existing vectors (parents). In addition, the HS algorithm can consider 
each component variable in a vector independently when it generates a new vector; the GA 
cannot, because it has to maintain the gene structure. 

This paper proposes two structural optimization methods, based on the HS heuristic 
algorithm: one treats pure discrete sizing variables (subsequently referred to as discrete size 
optimization) and the other treats integrated discrete sizing and continuous geometric 
variables (subsequently referred to as discrete-continuous configuration optimization). 
Several truss examples from the literature, including large-scale trusses under multiple 
loading conditions, are also presented to demonstrate the effectiveness and robustness of the 
new methods, as compared to current optimization techniques. 

 
 

2. FORMULATION OF SIZE AND CONFIGURATION OPTIMIZATION 
PROBLEMS 

 
In this study, discrete size and discrete-continuous configuration optimization methods 
based on the HS heuristic algorithm are introduced. The discrete size optimization of 
structural systems involves arriving at optimum values for discrete member cross-sectional 
areas A that minimize an objective function f(x), i.e., the structural weight W. Discrete-
continuous configuration optimization involves simultaneously arriving at optimum values 
for continuous nodal coordinates R and discrete cross sections A that minimize the structural 
weight. For a given topology, the configuration optimization problem is generally 
considered to be more difficult, but it is also a more important task than pure size 
optimization because of the potential for much larger savings. 

Both minimum designs must satisfy q inequality constraint functions that limit the design 
variable sizes and the structural responses. Thus, the problems can be stated mathematically, 
as minimizing the structural weight: 

 

 Minimize f(x) = W(A) or W(R, A) = ii

n

i

AL
1

  (1) 

 
 subjected to Gj

l   Gj(A) or Gj(R, A)  Gj
u, j = 1,2,…,q (2) 

 
where f(x) is an objective function, x is the set of each design variable, A = (A1, A2,…, An)

T 
is the sizing variable vector that consists of the cross-sectional areas chosen from a list of 
available discrete values, and R = (R1, R 2,…, R m)T is the continuous nodal coordinate 
variable vector. Also, W(A) and W(R, A) are the objective functions (i.e., the structural 
weight) for the discrete size or the discrete-continuous configuration optimizations, 
respectively, is the material density of each member, and Ai and Li are the cross-sectional 

area and length of the ith member. Gj(A) or Gj(R, A), shown in Eq. (2), are the inequality 
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constraints for the discrete size or the discrete-continuous configuration optimizations, and 
Gj

l and Gj
u are the lower and the upper bounds on the constraints.  

  For the methods presented in this paper, the lower and upper bounds on the constraint 
function Eq. (2) include the following: (1) nodal coordinates ,( u

ii
l
i RRR  ),...,1 mi  ; (2) 

member cross sections ),(( kAi ),...,1 ni  ; (3) member stresses ,( u
ii

l
i   ),...,1 ni  ; (4) 

nodal displacements ,( u
ii

l
i   ),...,1 mi  ; and (5) member buckling stresses 

,0(  i
cr
i  ni ,...,1 ). Here, i and i are the member stresses and nodal displacements, 

respectively, calculated from the structural analysis; l
iR , u

iR , l
i , u

i , l
i , u

i , and cr
i are 

the constraint limitations prescribed for optimization design purposes; and )(kAi  are the 

available discrete cross-sectional areas, i.e., )(),...,2(),1( kAAA iii  ))(...)2()1(( kAAA iii  . 
The nodal coordinate constraints are required only for the discrete-continuous configuration 
optimization. 

 
 

3. HS ALGORITHM-BASED SIZE AND CONFIGURATION OPTIMIZATION 
METHODS 

 
The penalty approach has frequently been employed to determine the fitness measure for the 
constrained optimization problems, described by Eqs. (1) and (2), because the optimum 
solution typically occurs at the boundary between the feasible and infeasible regions [10, 13, 
14, 15, 16]. However, to demonstrate the pure performance of the HS algorithm-based 
methods proposed in this study, a rejecting strategy for the fitness measure was adopted, i.e., 
the optimum solution was approached only from the feasible region. Figure 1 shows the 
design procedure that was used to apply the HS heuristic algorithm to the discrete size and 
the discrete-continuous configuration optimization problems. The procedure can be divided 
into four steps, as follows. 

 
(1) Step 1: Initialization 

The optimization problem is first specified as W(A) or W(R, A) in Eq. (1). For discrete size 
optimization problems, i.e., W(A), the number of discrete design variables (Ai) and the set of 
available discrete values (D), i.e., D {Ai(1), Ai(2),…, Ai(k)} (Ai(1) < Ai(2) < … < Ai(k)) are 
then initialized. For discrete-continuous configuration optimization problems, i.e., W(R, A), 
the number of continuous geometric variables (Ri) and the possible value bounds of the 
continuous variables, i.e., u

ii
l
i RRR  are initialized, as well as the discrete design variables. 

The HS algorithm parameters that are required to solve the optimization problem are also 
specified in this step. These include the harmony memory size (number of solution vectors 
in the harmony search, HMS), harmony memory considering rate (HMCR), pitch adjusting 
rate (PAR), and termination criterion (maximum number of searches). The HMCR and the 
PAR are parameters that are used to improve the solution vector. Both are defined in Step 2. 
Subsequently, the “harmony memory” (HM) matrix, shown in Eq. (3), is randomly 
generated from the available discrete value set for size optimization problems or from the 
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discrete size value set and the possible nodal coordinate bounds for configuration 
optimization problems. These sets are equal to the size of the HM (i.e., HMS). Here, an 
initial HM is generated based on the FEM structural analysis results, subject to the constraint 
functions (Eq. [2]), and sorted by the objective function values (Eq. [1]). 

 

Generation  of initial harmony me mory (HM) Sorted by objective function f(x) = W(A) or W(R,A)

Start

Initialization of optimization problem and HS algorithm parameters
f(x)=W(A) for size optimization or f(x)=W(R,A) for configuration optimization

Algorithm parameters: HMS, HMCR, PAR, maximum number of searches

FEM structural analysis

Stop

Step-1

Yes

No

Discrete sizing variables: Ai
number of Ai, available value set for  Ai

[i.e., Ai(1),  Ai(2),..., Ai(k)]

Continuous geometry variables: Ri
number of Ri, possible value bound for   Ri

[i.e., Ri
l < Ri < Ri

u]

Generation of a new harmony (x' = Ai or x' = R i + Ai)
   from HM or entire possible range based on memory considerations, pitch adjustment, and randomization

A new harmony improvisation
for discrete variables (Ai): see Fig. 2

A new harmony improvisation
for continuous variables ( Ri): see Fig. 3

Constraints
satisfied?

Step-2

Step-3

Calculation of
f(x)=W(A) or W(R,A)

New harmony
 better than a generated

harmony in  HM
Updating of HM

Maximum
number of searches

satisfied?

Sorted by objective function
f(x) = W(A) or W(R,A)

Yes

No

Yes

No

Step-4

Note : These are not required for the discrete size optimization.  

Figure 1. Design procedure for discrete size and discrete-continuous configuration optimization 
problems using hs heuristic algorithm 
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In Eq. (3), x1, x2,…, xHMS and f(x1), f(x2),…, f(xHMS) show each solution vector for design 

variables ( A or R and A) and the corresponding objective function value (the structural 
weight), respectively. 
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(2) Step 2: Generation of a new harmony 

In the HS algorithm, a new harmony vector, ),...,,( 21 pxxx x , is improvised from either the 

initially generated HM or the entire possible range of values. The new harmony 
improvisation proceeds based on memory considerations, pitch adjustments, and 
randomization.  

In the memory consideration process, the value of the first design variable ( 1x ) for the 

new vector is chosen from any value in the specified HM range { HMSxxx 1
2
1

1
1 ,,,  }. Values of 

the other decision variables ( ix ) are chosen in the same manner. Here, the possibility that a 
new value will be chosen is indicated by the HMCR parameter, which varies between 0 and 
1 as follows: 

 

 








)-(1

.},,,{ 21

HMCRw.p.x

HMCRw.pxxxx
x

ii

HMS
iiii

i
X


 (4) 

 
where Xi is the set of the possible range of values for each design variable (A or R and A). 
The HMCR sets the rate of choosing a value from the historic values stored in the HM, and 
(1-HMCR) sets the rate of randomly choosing a value from the entire possible range of 
values (randomization process). For example, a HMCR of 0.90 indicates that the HS 
algorithm will choose the design variable value from historically stored values in the HM 
with a 90% probability, and from the entire possible range of values with a 10% probability. 
A HMCR value of 1.0 is not recommended, because there is a chance that the solution will 
be improved by values not stored in the HM.  

 Every component of the new harmony vector, ),...,,( 21 pxxx x , is examined to 

determine whether it should be pitch-adjusted (pitch adjustment process). This procedure 
uses the PAR parameter that sets the rate of adjusting the pitch chosen from the HM as 
follows: 

 

 Pitch adjusting decision for ix




 )1( PARw.p.No

PARw.p.Yes
 (5) 

 
The pitch adjusting process is performed only after a value has been chosen from the 

HM. The value (1-PAR) sets the rate of doing nothing. A PAR of 0.3 indicates that the 
algorithm will choose a neighboring value with 30%HMCR probability. If the pitch 
adjustment decision for ix  is Yes, and ix  is assumed to be )(lxi , i.e., the l-th element in Xi, 
the pitch-adjusted value of )(lxi  is 

 
 ix xi(l + c) for discrete design variables (A) 

 ix ix  for continuous design variables (R) (6) 

 
where c is the neighboring index, c{1, 1}; is the value of )1,1(ubw ; bw is an 

arbitrary distance bandwidth for the continuous variable; and )1,1(u  is a uniform 



DISCRETE SIZE AND DISCRETE-CONTINUOUS CONFIGURATION... 
 

 

113

distribution between -1 and 1. Detailed flowcharts for the new harmony discrete and 
continuous search strategies based on the HS heuristic algorithm are given in Figures 2 and 
3, respectively. Note that the HMCR and PAR parameters introduced in the harmony search 
help the algorithm find globally and locally improved solutions. 
 

Number of Ai= n

i > n Stop: to Step 3

ran < HMCR
 D1=int(ran*nPVS)+1
 NDHV(i) = PVS(D1)

 D2=int(ran*HMS)+1
 D3=HM(D2,i)
 NDHV(i)=D3

ran < PAR

ran < 0.5

D2 < HMS

Ai: Discrete size variables ( i=1,2,..., n)
HMCR: Harmony memory considering rate
PAR: Pitch adjustment rate
HMS: Harmony memory size
HM(*,*): Harmony momery
ran : Random numbers in the range 0.0 ~ 1.0
PVS(*): Possible value set for Ai
nPVS: Number of  possible value sets for Ai
NDHV(*): A new discrete harmony vector
                 improvised in Step 2
E1: Memory considerations
E2: Pitch adjustments
E3: Randomization

D2 = D2-1
NDHV(i) = HM(D2,i)

D2 = D2+1
NDHV(i) = HM(D2,i)

Yes

No

No

Yes

Yes
No

Yes

Yes

No Yes

No

No

E3 Process

E1 Process

E2 Process E2 Process

Start: from Step 1

D2 > 1

 

Figure 2. A New harmony improvisation flowchart for discrete sizing variables (Step 2) 
 

Number of Ri=m

i > m Stop: to Step 3

ran < HMCR
 D3=int(ran*[Stepnum+1])

 D4=PVBlower(i)+D2*D3
 NCHV(i)=D4

 D3=int(ran*HMS)+1
 D4=HM(D3, i)
 NCHV(i)=D4

ran < PAR

PVBupper > D5

Ri: Continuous nodal coordinates variables
      (i=1,2,...,m)
HMCR: Harmony memory considering rate
PAR: Pitch adjustment rate
HMS: Harmony memory size
HM(*,*): Harmony momery matrix
ran: Random numbers in the range 0.0 ~ 1.0
PVB(*): Possible value bound for Ri
NCHV(*): A new continuous harmony vector
               improvised in Step 2
bw: An arbitrary distance bandwidth
E1: Memory considerations
E2: Pitch adjustments  E3: Randomization

NCHV(i)=D5

Yes

No

No

Yes

Yes

No

Yes

Yes

No

Yes

No
No

E3 Process

E1 Process

E2 Process E2 Process

Start: from Step 1

 D1=PVBupper (i)-PVBlower(i)
 D2=D1/Stepnum

PVBlower(i)< D5

D5=NCHV(i)-ran*bw

D5=NCHV(i)+ran*bw

NCHV(i)=D5

ran < 0.5

 

Figure 3. A new harmony improvisation flowchart for continuous nodal coordinate variables 
(Step 2) 
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(3) Step 3: Fitness measure and HM update 

The new harmony improvised in Step 2 is analyzed using a FEM structural analysis method, 
and its fitness is determined using a rejection strategy based on the constraint function. If the 
new harmony vector is better than the worst harmony vector in the HM, judged in terms of 
the objective function value, the new harmony is included in the HM and the existing worst 
harmony is excluded from the HM. The HM is then sorted by the objective function value. 

 
(4) Step 4: Repeat Steps 2 and 3 until the termination criterion is satisfied 

The computations terminate when the termination criterion is satisfied. If not, Steps 2 and 3 
are repeated. 

 
 

4. TRUSS EXAMPLES 
 

The previously described computational procedures were implemented in a FORTRAN 
computer program that was applied to discrete sizing and discrete-continuous configuration 
optimization problems for trusses. The FEM displacement method was used to analyze the 
truss structures. Standard test truss examples were considered to demonstrate the discrete 
search efficiency of the HS algorithm approach, as compared to current methods. The cases 
shown in Table 1, each with a different set of HS algorithm parameters (i.e., HMS, HMCR, 
and PAR), were tested with all of the examples presented in this study. These parameter 
values were arbitrarily selected, based on the empirical findings by Geem [23], which 
determined that the HS algorithm performed well with 30  HMS  100, 
0.7  HMCR  0.95, and 0.05  PAR  0.7. The maximum number of searches was set to 
30,000 for Examples 1 through 3 and 80,000 for Example 4. 

 
Table 1. HS algorithm parameters used for all examples 

Cases (1) HMS (2) HMCR (3) PAR (4) 

Case-1 

Case-2 

Case-3 

Case-4 

Case-5 

20 

40 

30 

30 

30 

0.9 

0.9 

0.9 

0.8 

0.9 

0.45 

0.45 

0.4 

0.3 

0.3 

 
 

5. DISCRETE SIZE OPTIMIZATION EXAMPLES 
 

Example 1: 25-bar space truss 

The 25-bar transmission tower space truss, shown in Figure 4, has been optimized using 
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discrete size algorithms by many researchers, including Rajeev and Krishnamoorthy [10], 
Wu and Chow [9, 13], Adeli and Park [24], Erbatur et al. [16], and Park and Sung [25]. In 
these studies, the material density was 0.1 lb/in.3 and modulus of elasticity was 10,000 ksi. 
This space truss was subjected to the following loading condition: PX = 1.0 kips and PY = PZ 

= -10.0 kips acting on node 1, PX = 0.0 kips and PY = PZ = -10.0 kips acting on node 2, PX = 
0.5 kips and PY = PZ = 0.0 kips acting on node 3, and PX = 0.6 kips and PY = PZ = 0.0 kips 
acting on node 6. The structure was required to be doubly symmetric about the X- and Y-
axes; this condition grouped the truss members as follows: (1) A1, (2) A2 ~ A5, (3) A6 ~ A9, 
(4) A10 ~ A11, (5) A12 ~ A13, (6) A14 ~ A17, (7) A18 ~ A21, and (8) A22 ~ A25. All members were 
constrained to 40 ksi in both tension and compression. In addition, maximum displacement 
limitations of  0.35 in. were imposed at each node in every direction. Discrete values for 
the cross-sectional areas were taken from the set D {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 
3.4} (in.2), which has thirty discrete values.  
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Figure 4. 25-bar space truss 

 
The HS algorithm-based discrete size optimization approach was applied to the space 

truss. Table 2 lists the HS result obtained with each set of parameters given in Table 1. The 
results reported by Rajeev and Krishnamoorthy [10], Wu and Chow [9, 13], and Erbatur et 
al. [16], obtained with GA-based methods, by Adeli and Park [24], obtained with the neural 
dynamics model, and by Park and Sung [25], obtained with the simulated annealing 
algorithm-based method, are also included in the table. After 13,523 to 18,734 searches 
(FEM structural analyses), the best solution vector and the corresponding objective function 
value (the structural weight) were obtained for all five HS cases (see Table 2). All of the HS 
results were better than the values obtained in the previous investigations. 
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Table 2. Optimal results of 25-bar space truss (Example 1) 

HS results Design 
variables Ai 

(in.2) (1) 
Case-1 

(2) 
Case-2 

(3) 
Case-3 

(4) 
Case-4 

(5) 
Case-5 

(6) 

Rajeev 
et al. 

(1992) 
(7) 

Wu & 
Chow 

(1995a) 
(8) 

Wu & 
Chow 

(1995b) 
(9) 

Adeli & 
Park 

(1996) 
(10) 

Erbatur 
et al. 

(2000) 
(11) 

Park & 
Sung 

(2002) 
(12) 

1 
2 
3 
4 
5 
6 
7 
8 

A1 

A2 ~ A5 

A6 ~ A9 

A10 ~ 
A11 

A12 ~ 
A13 

A14 ~ 
A17 

A18 ~ 
A21 

A22 ~ 
A25 

0.1 
0.6 
3.4 
0.1 
1.6 
1.0 
0.4 
3.4 

0.1 
0.3 
3.4 
0.1 
2.1 
1.0 
0.5 
3.4 

0.1 
0.3 
3.4 
0.1 
2.1 
1.0 
0.5 
3.4 

0.1 
0.5 
3.4 
0.1 
1.9 
0.9 
0.5 
3.4 

0.1 
0.3 
3.4 
0.1 
2.1 
1.0 
0.5 
3.4 

0.1 
1.8 
2.3 
0.2 
0.1 
0.8 
1.8 
3.0 

0.1 
0.6 
3.2 
0.2 
1.5 
1.0 
0.6 
3.4 

0.1 
0.5 
3.4 
0.1 
1.5 
0.9 
0.6 
3.4 

0.6 
1.4 
2.8 
0.5 
0.6 
0.5 
1.5 
3.0 

0.1 
1.2 
3.2 
0.1 
1.1 
0.9 
0.4 
3.4 

0.1 
2.1 
3.4 
0.1 
2.2 
1.1 
1.0 
3.0 

Weight (lb) 485.77 
[521.04]a 

484.85 
[504.72]a 

484.85 
[514.20]a 

485.05 
[514.21]a 

484.85 
[504.28]a 

546.01 491.72 486.29 543.95 493.80 537.23 

Number of 
structural 
analyses 

13,736 
[13,445]b 

14,163 
[4,414]b 

13,523 
[2,160]b 

17,159 
[5,226]b 

18,734 
[6,850]b 

600 - 40,000 - - - 

a The HS optimal results obtained after 600 structural analyses (the result of Rajeev and Krishnamoorthy, 1992). 
b Number of analyses for the HS required to obtain a weight of 486.29 lb (the result of Wu and Chow, 1995b). 
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Figure 5. Convergence history of minimum weight for 25-bar space truss (Example 1) 
 
Figure 5 shows a comparison of the convergence capability of each HS case and the GA-

based approaches. While the pure GA proposed by Rajeev and Krishnamoorthy [10] 
obtained a minimum weight of 546.01 lb after 600 structural analyses, the HS cases obtained 
minimum weights of 504.28 to 521.04 lb after the same number of analyses. The steady-
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state GA proposed by Wu and Chow [13] obtained a minimum weight of 486.29 lb after 
40,000 analyses, while all HS cases except Case 1 obtained the same weight after 2,160 to 
6,850 analyses. These results suggest that the HS-based method is a powerful search and 
discrete size optimization technique, as compared to pure and steady-state GA-based 
methods, in terms of both the obtained optimal value and the convergence capability. 

 
Example 2: 72-bar space truss 

The 72-bar space truss, shown in Figure 6, is one of the most popular classical 
optimization design problems, and has been used as a benchmark to verify the efficiency 
of various optimization methods. The majority of these studies have assumed that the 
cross-sectional areas (size variables) were continuous. However, Wu and Chow [13] 
optimized this space structure with discrete cross-sectional areas using the steady-state 
GA-based method. In this example, the material density and modulus of elasticity were 
0.1 lb/in.3 and 10,000 ksi, respectively. The space truss was subjected to the following 
two loading conditions: Condition 1, in which PX = 5.0 kips, PY = 5.0 kips, and PZ = -5.0 
kips on node 17; and Condition 2, in which PX = 0.0 kips, PY = 0.0 kips, and PZ = -5.0 
kips on nodes 17, 18, 19, and 20. The structure was required to be doubly symmetric 
about the X- and Y-axes. This condition divided the truss members into the following 
sixteen groups: (1) A1 ~ A4, (2) A5 ~ A12, (3) A13 ~ A16, (4) A17 ~ A18, (5) A19 ~ A22, (6) A23 
~ A30, (7) A31 ~ A34, (8) A35 ~ A36, (9) A37 ~ A40, (10) A41 ~ A48, (11) A49 ~ A52, (12) A53 ~ 
A54, (13) A55 ~ A58, (14) A59 ~ A66, (15) A67 ~ A70, and (16) A71 ~ A72. The members were 
subjected to stress limitations of 25  ksi, and the maximum displacement of the 
uppermost nodes was not allowed to exceed 25.0 in. for each node, in all directions. In 
this example, the available discrete values for the cross-sectional areas were chosen from 
the sixty-four discrete values listed in Table 3. 
 

Table 3. Available discrete cross-sections 

No. (1) Areas (2) No. (3) Areas (4) No. (5) Areas (6) No. (7) Areas (8) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

0.111 
0.141 
0.196 
0.250 
0.307 
0.391 
0.442 
0.563 
0.602 
0.766 
0.785 
0.994 
1.000 
1.228 
1.266 
1.457 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

1.563 
1.620 
1.800 
1.990 
2.130 
2.380 
2.620 
2.630 
2.880 
2.930 
3.090 
3.130 
3.380 
3.470 
3.550 
3.630 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

3.840 
3.870 
3.880 
4.180 
4.220 
4.490 
4.590 
4.800 
4.970 
5.120 
5.740 
7.220 
7.970 
8.530 
9.300 

10.850 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

11.500 
13.500 
13.900 
14.200 
15.500 
16.000 
16.900 
18.800 
19.900 
22.000 
22.900 
24.500 
26.500 
28.000 
30.000 
33.500 

Note: cross-sectional areas are in in.2. 
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Figure 6. 72-Bar Space Truss 

Table 4. Optimal results for 72-bar space truss (Example 2) 

HS results Wu and Chow (1995b) 
Design 

variables Ai 
(in.2) (1) 

Case-1 
(2) 

Case-2 
(3) 

Case-3 
(4) 

Case-4 
(5) 

Case-5 
(6) 

1Xb 
(7) 

2Xb 
(8) 

3Xb 
(9) 

4Xb 
(10) 

Xicheng 
& 

Guixu 
(1992)c 

(11) 

Erbatur 
et al. 

(2000)c 

(12) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

A1 ~ A4 

A5 ~ A12 

A13 ~ A16 

A17 ~ A18 

A19 ~ A22 

A23 ~ A30 

A31 ~ A34 

A35 ~ A36 

A37 ~ A40 

A41 ~ A48 

A49 ~ A52 

A53 ~ A54 

A55 ~ A58 

A59 ~ A66 

A67 ~ A70 

A71 ~ A72 

1.800 
0.602 
0.111 
0.111 
1.457 
0.563 
0.111 
0.111 
0.442 
0.442 
0.111 
0.141 
0.196 
0.563 
0.250 
1.000 

1.990 
0.602 
0.111 
0.111 
1.228 
0.563 
0.111 
0.111 
0.442 
0.442 
0.111 
0.111 
0.196 
0.563 
0.391 
0.563 

1.990 
0.442 
0.111 
0.111 
1.266 
0.563 
0.111 
0.111 
0.391 
0.602 
0.111 
0.111 
0.196 
0.563 
0.391 
0.563 

1.990 
0.602 
0.111 
0.111 
1.457 
0.391 
0.141 
0.111 
0.391 
0.602 
0.111 
0.111 
0.196 
0.602 
0.391 
0.563 

1.620 
0.602 
0.111 
0.111 
1.457 
0.391 
0.111 
0.111 
0.563 
0.563 
0.111 
0.111 
0.196 
0.602 
0.391 
0.785 

1.563 
0.307 
0.111 
0.111 
2.130 
0.602 
0.111 
0.111 
0.766 
1.000 
0.111 
0.111 
0.785 
0.602 
0.602 
0.602 

1.990 
0.602 
0.141 
0.111 
0.994 
0.602 
0.111 
0.307 
0.307 
0.602 
0.111 
0.563 
0.250 
0.766 
0.307 
0.391 

1.990 
0.563 
0.111 
0.141 
1.457 
0.602 
0.111 
0.111 
0.442 
0.766 
0.111 
0.141 
0.196 
0.442 
0.250 
1.000 

1.563 
0.766 
0.141 
0.111 
1.800 
0.602 
0.141 
0.307 
0.391 
0.391 
0.141 
0.111 
0.196 
0.602 
0.307 
0.766 

1.905 
0.518 
0.100 
0.100 
1.286 
0.516 
0.100 
0.100 
0.509 
0.522 
0.100 
0.100 
0.157 
0.537 
0.411 
0.571 

1.910 
0.525 
0.122 
0.103 
1.310 
0.498 
0.110 
0.103 
0.535 
0.535 
0.103 
0.111 
0.161 
0.544 
0.379 
0.521 

Weight (lb) 400.63 390.62 390.30 399.23 396.38 471.98 439.77 428.00 427.20 380.84 383.12 
Number of 
structural 
analyses 

25,717 
[7,242]a 

26,812 
[7,462]a 

21,901 
[3,711]a 

13,866 
[4,819]a 

22,894 
[3,677]a 

60,000 60,000 60,000 60,000 - - 

a Number of analyses for the HS required to obtain a weight of 427.2 lb (the best result of Wu and Chow, 1995b). b Crossover operators 
used by Wu and Chow (1995b). c The optimal results of continuous size optimization. 
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Figure 7 shows a comparison of the convergence capability of each HS case and the 
steady-state GA-based method [13]. Wu and Chow obtained a minimum weight of 427.2 lb 
after 60,000 structural analyses using a four-point crossover operator, while the proposed 
HS approach obtained the same weight after 3,711 to 7,462 analyses. The HS approach 
therefore outperformed the steady-state GA-based method, in terms of both the obtained 
optimal value and the convergence capability. 
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Figure 7. Convergence history of minimum weight for 72-bar space truss (Example 2) 
 
 

6. DISCRETE-CONTINUOUS CONFIGURATION OPTIMIZATION 
EXAMPLES 

 
Example 3: 25-bar space truss 

The 25-bar transmission tower space truss shown in Figure 4, which was previously studied 
by Wu and Chow [9] using the GA-based method, was also analyzed to optimize both the 
sizes of the discrete members and the continuous geometric variables. The design details, 
such as the material properties, constraints, loading condition, truss member groups, and set 
of available discrete cross sections, were the same as those used in Example 1. For the 
configuration optimization, the geometric variables of the structure were selected as 
coordinates X4, Y4, Z4, X8, and Y8, with symmetry required in X-Z and Y-Z planes. Hence, 
there were thirteen independent design variables, including the eight sizing variables given 
in Example 1 and five geometric variables. The side constraints for the geometric variables, 
i.e., the lower and upper bounds on the nodal coordinates, were 20  X4 60, 40  Y4  80, 
90  Z4  130, 40  X8  80, and 100  Y8  140 (in.). 
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The HS-based discrete-continuous configuration optimization method was applied to the 
25-bar space truss using each set of parameters shown in Table 1. The algorithm found the 
best solution vector (i.e., the values of the eight sizing variables and five geometric 
variables) with each set of parameters within 30,000 searches. Table 5 gives the best 
solution and the corresponding minimum structural weight for each case, and also provides a 
comparison between the optimal design result reported by Wu and Chow [9] and the present 
work. The best minimum weight of 123.77 lb was obtained using the Case 5 parameters 
after 8,902 searches (structural analyses), and this minimum weight converged remarkably 
after only 2,000 searches. The results from each HS case were better than the previous 
design result reported by Wu and Chow [9], and the HS best result using the Case 5 
parameters produced a weight saving of 10%, as compared to the GA-based method 
proposed by Wu and Chow [9].  

The configuration optimization achieved an amazing optimal weight saving of 70%, as 
compared to the pure HS size optimization, which obtained a best minimum weight of only 
484.85 lb, as shown in Table 2. 

 
Table 5. Optimal results of 25-bar space truss (Example 3) 

HS results Design variables 

Ai (in.2) & Ri (in.)  

(1) 

Case-1 

(2) 

Case-2 

(3) 

Case-3 

(4) 

Case-4 

(5) 

Case-5 

(6) 

Wu & Chow 

(1995a) 

(7) 

1 

2 

3 

4 

5 

6 

7 

8 

A1 

A2 ~ A5 

A6 ~ A9 

A10 ~ A11 

A12 ~ A13 

A14 ~ A17 

A18 ~ A21 

A22 ~ A25 

0.1 

0.2 

0.9 

0.1 

0.1 

0.1 

0.1 

1.2 

0.1 

0.1 

1.0 

0.1 

0.1 

0.1 

0.4 

0.7 

0.1 

0.2 

0.9 

0.1 

0.1 

0.2 

0.2 

0.8 

0.2 

0.2 

1.0 

0.1 

0.2 

0.1 

0.1 

1.0 

0.2 

0.1 

0.9 

0.1 

0.1 

0.1 

0.2 

1.0 

0.1 

0.2 

1.1 

0.2 

0.3 

0.1 

0.2 

0.9 

1 

2 

3 

4 

5 

X4 

Y4 

Z4 

X8 

Y8 

31.64 

66.30 

102.22 

40.00 

125.74 

28.54 

55.18 

127.80 

43.02 

136.66 

29.51 

56.76 

130.0 

41.74 
133.62 

27.94 

55.21 

123.70 

43.63 

130.83 

31.88 

53.57 

126.35 

40.43 

130.64 

41.07 

53.47 

124.60 

50.80 

131.48 

Weight (lb) 

129.34 

[138.10]a 

[130.40]b 

[129.53]c 

[129.36]d 

123.81 

[152.10]a 

[140.63]b 

[134.29]c 

[124.92]d 

126.07 

[154.05]a 

[141.65]b 

[131.71]c 

[131.03]d 

126.74 

[168.09]a 

[146.68]b 

[133.87]c 

[128.16]d 

123.77 

[137.79]a 

[124.28]b 

[123.86]c 

[123.80]d 

136.20 

Number of 
structural analyses 

29,290 9,646 23,100 19,833 8,902 - 

a The structural weights obtained after 1,000 analyses. b The structural weights obtained after 2,000 
analyses. c The structural weights obtained after 3,000 analyses. 
d The structural weights obtained after 8,000 analyses. 
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Example 4: 47-bar planar power line tower 

The 47-bar planar power line tower design, shown in Figure 8, was the last example used to 
demonstrate the practical capability of the HS algorithm-based structural optimization 
method. This tower was previously analyzed by Felix [26] and Hansen and Vanderplaats 
[27] to obtain optimal continuous size and geometric variables (i.e., a continuous 
configuration optimization). In this problem, the structure had forty-seven members and 
twenty-two nodes, and was symmetric about the Y-axis. All members were made of steel, 
and the material density and modulus of elasticity were 0.3 lb/in.3 and 30,000 ksi, 
respectively. This tower was designed for three separate load conditions: (1) 6.0 kips acting 
in the positive X-direction and 14.0 kips acting in the negative Y-direction at nodes 17 and 
22, (2) 6.0 kips acting in the positive X-direction and 14.0 kips acting in the negative 
Y-direction at node 17, and (3) 6.0 kips acting in the positive X-direction and 14.0 kips 
acting in the negative Y-direction at node 22. The first condition represented the load 
imposed by two power lines attached to the tower at an angle. The second and third 
conditions represented cases that occur when one of the two lines snaps. 
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Figure 8. 47-bar planar power line tower 
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The structure was subjected to both stress and buckling constraints. The stress constraints 
were 15.0 ksi in compression and 20.0 ksi in tension. The Euler buckling compressive stress 
limit for each member i was used for the buckling constraints. This was computed as  

 

 )47,...,1(
2




 i
L

KEA

i

icr
i  (7) 

 
where K is a constant determined from the cross-sectional geometry, E is the modulus of 

elasticity of the material, and Li is the member length. In this study, the buckling constant 
was K = 3.96. The cross-sectional areas of the members were categorized into twenty-seven 
groups, as follows:  

 
(1) A1 = A3, (2) A2 = A4, (3) A5 = A6, (4) A7, (5) A8 = A9, (6) A10, (7) A11 = A12, (8) A13 = A14, (9) 
A15 = A16, (10) A17 = A18, (11) A19 = A20, (12) A21 = A22, (13) A23 = A24, (14) A25 = A26, (15) A27, 
(16) A28, (17) A29 = A30, (18) A31 = A32, (19) A33, (20) A34 = A35, (21) A36 = A37, (22) A38, (23) 
A39 = A40, (24) A41 = A42, (25) A43 , (26) A44 = A45, and (27) A46 = A47.  
 
The independent geometric variables were X2, X4, Y4, X6, Y6, X8, Y8, X10, Y10, X12, Y12, X14, 
Y14, X20, Y20, X21, and Y21. The geometric variables were linked to maintain symmetry about 
the Y-axis. Nodes 1 and 2 were required to remain at Y = 0.0, and the coordinates of nodes 
15, 16, 17, and 22 were not changed. There were forty-four independent design variables, 
including twenty-seven sizing variables and seventeen coordinate variables. In this example, 
the cross-sectional areas were chosen from the sixty-four discrete values listed in Table 3, 
and a pure discrete sizing variable problem (with fixed geometry) was also optimized for 
comparison. 

Table 6 gives the optimal results obtained using each set of HS parameters for the 
discrete-continuous configuration optimization, along with the optimal results for the 
continuous configuration problem. The best pure discrete size result, which was obtained 
using the Case 3 parameters, is also listed in the table. After 73,257 to 76,937 searches 
(structural analyses), the best discrete-continuous solution vector and the corresponding 
objective function value were obtained for each HS case. The best minimum weight of 
2,020.78 lb was obtained using the Case 1 parameters after 73,771 searches, and this 
minimum weight converged remarkably after 40,000 searches. The discrete-continuous 
configuration optimization produced a considerable weight saving of 16%, as compared to 
the pure discrete size optimization, which obtained a minimum weight of 2,396.8 lb. 
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Table 6. Optimal results of 47-bar planar power line 

HS results Design 
variables 

Ai (in.2) & Ri 
(in.) (1) 

Pure Size 
Case-3* 

(2) 

Case-1 
(3) 

Case-2 
(4) 

Case-3 
(5) 

Case-4 
(6) 

Case-5 
(7) 

Felix** 
(1981) 

(8) 

Hansen & 
Vanderpl- 

aats**(1990) 
(9) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

A1 = A3 

A2 = A4 

A5 = A6 

A7 

A8 = A9 

A10 

A11 = A12 

A13 = A14 

A15 = A16 

A17 = A18 

A19 = A20 

A21 = A22 

A23 = A24 

A25 = A26 

A27 

A28 

A29 = A30 

A31 = A32 

A33 

A34 = A35 

A36 = A37 

A38 

A39 = A40 

A41 = A42 

A43 

A44 = A45 

A46 = A47 

3.840 
3.380 
0.766 
0.141 
0.785 
1.990 
2.130 
1.228 
1.563 
2.130 
0.111 
0.111 
1.800 
1.800 
1.457 
0.442 
3.630 
1.457 
0.391 
3.090 
1.457 
0.196 
3.840 
1.563 
0.196 
4.590 
1.457 

2.620 
2.630 
1.228 
0.196 
1.000 
1.620 
1.800 
0.785 
1.000 
1.563 
0.391 
0.766 
1.228 
1.228 
1.228 
0.196 
2.930 
0.994 
0.111 
3.470 
1.000 
0.111 
3.380 
1.228 
0.111 
3.380 
0.994 

3.550 
3.090 
0.766 
0.141 
1.000 
1.228 
1.990 
1.000 
1.228 
1.800 
0.602 
0.994 
1.457 
1.457 
1.228 
0.250 
2.880 
1.228 
0.111 
2.880 
1.000 
0.111 
3.130 
1.266 
0.111 
3.470 
1.563 

3.130 
3.090 
1.000 
0.111 
0.994 
1.228 
2.130 
0.785 
1.228 
1.990 
0.785 
0.994 
1.457 
1.457 
1.000 
0.111 
2.880 
0.994 
0.141 
3.130 
1.228 
0.307 
3.380 
1.000 
0.111 
3.630 
1.266 

3.090 
2.880 
0.994 
0.141 
1.228 
1.620 
2.380 
0.602 
1.228 
1.620 
0.563 
1.457 
1.228 
1.228 
1.457 
0.141 
3.130 
0.994 
0.111 
3.380 
1.000 
0.111 
3.470 
1.228 
0.250 
3.470 
0.994 

2.930 
2.630 
1.228 
0.141 
0.994 
1.800 
2.380 
0.602 
0.994 
1.620 
0.602 
1.228 
1.228 
1.228 
1.457 
0.196 
3.130 
0.766 
0.111 
3.550 
1.000 
0.111 
3.380 
1.000 
0.111 
3.470 
1.266 

2.73 
2.47 
0.73 
0.21 
0.94 
1.08 
1.69 
0.69 
1.06 
1.41 
0.26 
0.81 
1.06 
1.05 
0.82 
0.30 
2.77 
0.66 
0.21 
2.90 
0.27 
1.41 
3.43 
0.99 
0.17 
3.65 
1.01 

2.42 
2.35 
0.82 
0.10 
0.86 
1.15 
1.77 
0.67 
0.86 
1.24 
0.33 
1.22 
0.93 
0.86 
0.69 
0.15 
2.46 
0.90 
0.10 
2.74 
0.92 
0.10 
2.94 
1.13 
0.10 
3.12 
1.10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

-X1=X2 
-X3= X4 
Y3=Y4 
-X5=X6 
Y5=Y6 
-X7=X8 
Y7=Y8 

-X9=X10 
Y9=Y10 

-X11=X12 
Y11=Y12 
-X13=X14 
Y13=Y14 
-X18=X21 
Y18=Y21 
-X19=X20 
Y19=Y20 

60.0* 
60.0* 

120.0* 
60.0* 

240.0* 
60.0* 

360.0* 
30.0* 

420.0* 
30.0* 

480.0* 
30.0* 

540.0* 
90.0* 

600.0* 
30.0* 

600.0* 

98.9 
80.9 

114.8 
62.8 

236.9 
51.3 

315.9 
47.9 

387.4 
50.3 

477.3 
41.4 

521.4 
92.5 

615.3 
14.3 

596.5 

89.4 
83.1 

111.7 
74.4 

234.9 
59.5 

339.3 
40.7 

429.6 
35.2 

455.3 
34.4 

505.7 
83.9 

609.2 
18.4 

586.4 

85.9 
80.9 

115.4 
61.6 

233.9 
55.4 

319.4 
46.9 

409.9 
35.3 

471.8 
36.6 

504.9 
84.8 

606.8 
17.1 

582.0 

97.7 
80.9 
114.1 
60.1 
225.2 
49.2 
323.1 
44.4 
392.1 
38.1 
477.3 
40.1 
519.2 
91.3 
620.9 

6.9 
580.7 

91.6 
80.9 

122.9 
61.6 

238.4 
47.6 

327.9 
41.1 

394.1 
42.7 

476.6 
42.4 

504.7 
84.7 

615.5 
3.2 

569.6 

90.0 
90.0 
123.4 
83.4 
244.5 
70.5 
355.1 
60.0 
425.0 
58.2 
478.0 
59.6 
519.5 
96.9 
633.7 
15.0 
607.6 

107.1 
91.2 
122.8 
74.2 
241.4 
65.5 
324.6 
57.1 
400.4 
49.3 
472.3 
47.4 
507.5 
83.3 
636.0 

3.9 
586.5 

Weight (lb) 

2,396.8 
[2,471.1]a 

[2,434.3]b 

[2,407.7]c 

2,020.78 
[2,428.62]a 

[2,198.13]b 

[2,066.73]c 

2,116.14 
[2,608.26]a 

[2,339.84]b 

[2,195.27]c 

2,091.21 
[2,580.55]a 

[2,361.17]b 

[2,189.57]c 

2,096.35 
[2,735.43]a 

[2,421.92]b 

[2,225.39]c 

2,056.77 
[2,468.82]a 

[2,269.06]b 

[2,165.42]c 

1,904.0 1,850.4 

Number of 
analyses 

45,557 73,771 76,937 74,721 76,828 73,257 - - 

* Coordinate is stationary. ** The results of continuous configuration optimizations. 
a Structural weights obtained after 10,000 analyses. b Structural weights obtained after 20,000 analyses. 
c Structural weights obtained after 40,000 analyses. 
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7. CONCLUSIONS 
 

Pure discrete size and integrated discrete size and continuous configuration optimization 
methods for structural systems, based on the HS algorithm, were proposed in this paper. 
Several standard truss examples from the literature were also presented to demonstrate the 
effectiveness and robustness of the proposed method. The results were compared to those 
obtained using current discrete optimization methods, especially GA-based techniques. The 
illustrative examples revealed that the HS optimal results were better than those obtained 
from all previous investigations. Also, the convergence capability of the proposed HS 
approach outperformed that of the GA-based methods. Therefore, our study suggests that the 
new HS-based method is a potential powerful search and optimization technique for solving 
structural optimization problems with discrete sizing variables. 

The recently developed HS heuristic algorithm is simple and mathematically less complex 
than the GA. The HS algorithm generates new vectors, based on the harmony memory 
considering rate and the pitch adjusting rate, after considering all of the existing vectors, while 
the GA generates a new vector from only two of the existing vectors (parents). These features 
increase the flexibility of the HS algorithm and allow it to find better solutions. Furthermore, 
the HS algorithm adopted a parameter-setting-free adaptive feature, enabling the algorithm 
users not to perform tedious parameter setting process [28, 29]. 

The HS algorithm-based method proposed in this study is not limited to truss structural 
optimization problems. Besides trusses, the HS algorithm can also be applied to other types 
of structural optimization problems, including frame structures, plates, and shells. 
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